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Introduction. In a recent paper,1 Carl Bender and co-authors have drawn
attention to a point at which a line of formal argument frequently encountered
in elementary expositions of quantum mechanics becomes so informal as to be
fundamentally incorrect, and indicate how, by appeal to a device introduced
by Euler, the defect can be circumvented. My objective here will be to provide
an account BBP’s interesting work—which relates not to the physics but only
to the mathematics of quantum mechanics—to place it in a somewhat more
general context, and to discuss some of its non-obvious ramifications.

Mathematical prelude. The BBP paper is an exercise in applied mathematics,
the ideas that they take for a ride around the block are not physical but
mathematical. By way of preparation I look here to a few of those.

The Fourier Integral Theorem asserts that for a broad class of “nice”
functions f(x)

f(x) = 1
2π

∫ ∞

−∞

{∫ ∞

−∞
f(y)e−ikydy

}
eikxdx

Written
f(x) =

∫ ∞

−∞
f(y)

{
1
2π

∫ ∞

−∞
e−ik(y−x)dk

}
dy (1)

1 Carl M. Bender, Dorje C. Brody & Matthew F. Parry, “Making sense of
the divergent series for reconstructing a Hamiltonian from its eigenstates and
eigenvalues,” AJP 88, 148–152 (2020), henceforth denoted BBP.
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this becomes the assertion that the functions

ϕk(x) = 1√
2π

eikx

are complete:
∫ ∞

−∞
ϕ̄k(y)ϕk(x)dk = δ(y − x) (2.1)

But

if 1
2π

∫ ∞

−∞
e−ik(y−x)dk = δ(y − x) then 1

2π

∫ ∞

−∞
e−ix(k−j)dx = δ(k − j)

which written ∫ ∞

−∞
ϕ̄k(x)ϕj(x)dx = δ(k − j) (2.2)

asserts the orthonormality of the functions ϕk(x). Equations (2) illustrate the
sense in which “completeness” and “orthonormality” are sibling—though by no
means equivalent—notions.

It the derivative ∂xf(x) of the nice function f(x) is also nice, we expect—by
(1) written

f(x) =
∫ ∞

−∞
f(y)δ(y − x)dy

—to have

∂xf(x) =
∫ ∞

−∞
f(y)[−∂yδ(y − x)]dy by ∂xg(y − x) = −∂yg(y − x)

=
∫ ∞

−∞
∂yf(y)δ(y − x)dy after integrating by parts

Which raises the question (a question for which the Gaussian representation of
δ(y − x) provides a pretty answer): What kind of object is

∂yδ(y − x) = ∂y

{
1
2π

∫ ∞

−∞
e−ik(y−x)dk

}

Turning now from Fourier integrals to Fourier series, the functions

sn(x) ≡
√

2/π sin(nx) : n = 1, 2, . . .

are nice on the interval x ∈ [0, π] and vanish on its boundaries. If so also is/does
f(x), then—with Fourier/Dirac—we expect by orthonormality

∫ π

0
sm(x)sn(x)dx = δmn
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to have

f(x) =
∞∑

n=1

fnsn(x)

fn =
∫ π

0
f(y)sn(y)dy

=
∞∑

n=1

∫ π

0
f(y)sn(y)sn(x)dy

=
∫ π

0

∞∑

n=1

f(y)sn(y)sn(x)dy =
∫ π

0
f(y)δ(y − x)dy (3)

which asserts the completeness of the functions sn(x):
∞∑

n=1

sn(y)sn(x) = δ(y − x) (4)

Plot
∑N

n=1 sn(y)sn(x) as a function of y, with fixed x ∈ [0, π] and ascending
values of N to gain a sense of how completeness comes about.

Proceding formally from (3), we have

∂xf(x) =
∫ π

0
f(y) · ∂xδ(y − x)dy

= −
∫ π

0
f(y) · ∂yδ(y − x)dy

= −f(y)δ(y − x)
∣∣∣
π

0︸ ︷︷ ︸
+

∫ π

0
∂yf(y) · δ(y − x)dy

0
From (4) we are led formally to write

∂yδ(y − x) = ∂y

∞∑

n=1

sn(y)sn(x) %

=
∞∑

n=1

∂ysn(y) · sn(x) %%

=
∞∑

n=1

(2/π)n cos(ny) sin(nx)

which actually makes a kind of sense when plotted. But2
∑N

n sn(y)sn(x) is not
a uniformly convergent sequence of functions of y: it is manifestly not the case
that for all ε > 0 there exists a N0 such that

∣∣δ(y − x) −
∑N

n sn(y)sn(x)
∣∣ < ε : all N > N0

So the step % ←→ %% is disallowed: uniform convergence is necessary (but not
sufficient) for term-wise differentiation to be permitted. It is to a step taken

2 Assign to x any fixed value in [0, π].



4 A quantum misdemeanor

violation of this fundamental fact that BBP draw attention, and for which they
devise (borrow from Euler) a work-around.

The more general quantum context. An important role in expository classical/
quantum mechanics is played by systems in which a mass m moves one-
dimensionally in the presence of a time-independent potential V (x). In classical
Hamiltonian physics the dynamical motion of a phase point {p, x} is regulated,
via the canonical equations, by the Hamiltonian H(p, x) = 1

2mp2 + V (x). In
quantum physics the dynamical motion of the quantum state |ψ) is regulated
via the abstract Schrödinger equation

H |ψ) = i!∂t|ψ) (5)

by the Hamiltonian operator H = 1
2m p2 + V (x). In the x-representation (made

natural by V (x) and the way boundary conditions are usually phrased) (5)
becomes

∫
(x|H |y)dy(y|ψ) = i!∂t(x|ψ) (6.1)

(x|ψ) = ψ(x, t)

which is most commonly written3

{
1

2m

(!
i ∂x

)2 + V (x)
}
ψ(x, t) = i!∂tψ(x, t) (6.2)

Among the solutions of (6.2) are solutions of the separated form

ψE(x) · exp
(

1
i!Et

)

where ψE(x) is a boundary-condition-satisfying solution of the t-independent
Schrödinger equation

{
1

2m

(!
i ∂x

)2 + V (x)
}
ψE(x) = EψE(x) (7)

where the allowed E-values comprise the “spectrum” of the differential operator{
1

2m

(!
i ∂x

)2 + V (x)
}
. Abstractly

H |E) = E|E), (x|E) = ψE(x) (8)

Look to a case in which the eigenvalues are distinct. Write

{E0, E1, E2, . . .} and {|0), |1), |2), . . .}

to denote the non-degenerate eigenvalues and associated eigenstates, whereupon

3 Discussion of how one gets from (6.1) to (6.2) can be found in my Quantum
Class Notes (2000), New Chapter 0, pages 29–38.
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has become

H |n) = En|n), (x|n) = ψn(x) : n = 0, 1, 2, . . .

Using this apparatus—together with the spectral decomposition of the
Hamiltonian

H =
∑

n

|n)En(n|

and the assumption that set {|n)} of eigenstates is complete

I =
∑

n

|n)(n|

—to proceed formally from (6.1), we have
∫

(x|H |y)dy(y|ψ) =
∫

H(x, y)dy(y|ψ)

H(x, y) =
∑

n

(x|n)En(n|y)

=
∑

n

(x|n)
{

1
2m

(!
i ∂y

)2 + V (y)
}
(n|y) %

=
{

1
2m

(!
i ∂y

)2 + V (y)
} ∑

n

(x|n)(n|y) %%

=
{

1
2m

(!
i ∂y

)2 + V (y)
}
δ(y − x)

whence =
{

1
2m

(!
i ∂x

)2 + V (x)
}
(x|ψ)

and so have recovered (6.2) from (6.1)? It is at % ←→ %% that BBP blow their
whistle, call foul, on the ground that the series on the right side of

δ(y − x) = lim
N↑∞

N∑

n

(x|n)(n|y)

is not uniformly convergent.

BBP resolution: case of a particle-in-a-box. Stripped to its bare bones,4 the
time-independent Schrödinger equation for a boxed particle reads

− 1
2∂2

x ψ(x) = Eψ(x)

which by the requirements ψ(0) = ψ(π) = 0 and
∫ π
0 |ψ(x)|2dx = 1 supply

4 For the fully clothed theory, see (for example) David Griffiths & Darrell
Schroeter, Introduction to Quantum Mechanics (3rd edition, 2018), §2.2. It
is for mainly notational reasons that we set ! = m = 1 and place the box
boundaries at [0, π].
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eigenvalues/functions

En = 1
2n2, ψn(x) =

√
2/π sin(nx) : n = 1, 2, . . .

The BBP objective in this instance is to achieve
∫ π

0
H(x, y)ψ(y)dy = − 1

2∂2
xψ(x)

Their problem: to get from

H(x, y) =
∑

n=1

√
2/π sin(nx) · 1

2n2 ·
√

2/π sin(ny)

to = − 1
2∂2

yδ(y − x) (9)

even though the non-convergence of

J(x, y) ≡ 2
π

∞∑

n=1

sin(nx) · sin(ny)

= 1
π

∞∑

n=1

{
cos[n(x − y)] − cos[n(x + y)]

}

= 2
π

{
1 + 0 + 1 + 0 + 1 + 0 + · · ·

}
at x = y = 1

2π

causes the simple formal argument to fail.

To resolve this (seemingly fatal) difficulty, they look—with Euler, whose
spirit seems to have inspired the following clever argument—to the tempered
series

J(x, y; λ) ≡ 1
π

∞∑

n=1

λn
{
cos[n(x − y)] − cos[n(x + y)]

}

Using cos(nu) = 1
2 (einu + e−inu) and

∞∑

n=1

(λeiu)n =
∞∑

n=0

(λeiu)n − 1

= 1
1 − λeiu

− 1

we have
∞∑

n=1

λn cos(nu) = 1
2

[ 1
1 − λeiu

+ 1
1 − λe−iu

]
− 1

∞∑

n=1

λn
{
cos(nu) − cos(nv)

}
= 1

2

[ 1
1 − λeiu

+ 1
1 − λe−iu

]

− 1
2

[ 1
1 − λeiv

+ 1
1 − λe−iv

]
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Using ComplexExpand and Simplify, we find

1
2

[ 1
1 − λeiu

+ 1
1 − λe−iu

]
= 1 − λ cos u

1 − 2λ cos u + λ2
≡ D(u, λ)

giving
J(x, y; λ) ≡ 1

π

{
D(x − y, λ) − D(x + y, λ)

}
(10)

BBF observe that

D(u, λ) = 1
1 − λ

: cos u = 1; i.e., u = nπ : n = 0,±2,±4, . . .

lim
λ→1

D(u, λ) = 1 : cos u &= 1
(11)

Let ! denote the square inscribed on the xy -plane with opposite vertices
at {0, 0} and {π, π}. On the diagonal we have x− y = 0, while at other interior
points and x + y < 2π, so by (9, 10)

J(x, y; λ) =
{ [π(1 − λ)] –1 : on the diagonal: x = y

0 : elsewhere within !
giving

lim
λ→1

J(x, y; λ) =
{∞ : x = y

0 : otherwise
which suggests that

= δ(y − x) (12)

To properly establish (12) we show that in the limit λ ↑ 1 we realize a condition
of the δ(y − x)-defining form

∫ b

a
δ(y − x)dy =

{ 0 : a < b < x
1 : a < x < b
0 : x < a < b

(13)

Termwise integration gives
∫ b

a
J(x, y; λ)dy = − 2

π

∞∑

n=1

1
nλn sin(nx)

{
cos(nb) − cos(na)

}

and Mathematica supplies

− 2
π

∞∑

n=1

1
nλn sin(nx) cos(nb)

= −i 1
2π

{
log

(
1 − λei(x+b)

)

+ log
(
1 − λei(x−b)

)

− log
(
1 − λe−i(x+b)

)

− log
(
1 − λe−i(x−b)

)}

= −i 1
2π log f(x + b)f(x − b)

f̄(x + b)f̄(x − b)
where f(u) ≡ 1 − λeiu

f̄(u) = f(−u)
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Similarly

+ 2
π

∞∑

n=1

1
nλn sin(nx) cos(na) = +i 1

2π log f(x + a)f(x − a)
f̄(x + a)f̄(x − a)

= −i 1
2π log f̄(x + a)f̄(x − a)

f(x + a)f(x − a)

= −i 1
2π log f(−x − a)f(−x + a)

f̄(−x − a)f̄(−x + a)

so ∫ b

a
J(x, y; λ)dy = −i 1

2π log f(x + b)f(x − b)
f̄(x + b)f̄(x − b)

f(−x − a)f(−x + a)
f̄(−x − a)f̄(−x + a)

From

f(u) = 1 − λeiu =
√

1 − 2λ cos u + λ2 exp
{

i arctan
[

λ sin u
λ cos u − 1

]}

we obtain

−i 1
2π log f(u)

f̄(u)
= −i 1

2π · 2i arctan
[

λ sin u
λ cos u − 1

]
= 1

π arctan
[

λ sin u
λ cos u − 1

]

= 1
π arctan

[
− cot 1

2u
]

at λ = 1
≡ g(u)

From the graph of g(u) we learn that (contrary to what BBP report at u = 0)

g(u) =






1
2π (u − π) : u > 0
indeterminate : u = 0
1
2π (u + π) : u < 0

(14)

Therefore

J(x; a, b) ≡
∫ b

a
J(x, y; λ↑1)dy = g(x + b) + g(x − b) + g(−x − a) + g(−x + a)

so working from the following table

x + b x − b −x − a −x + a
0 " x < a < b " π + − − +
0 " a < x < b " π + − − −
0 " a < b < x " π + + − −

we by (14) have—in those respective cases—

J =






1
2π

[
(x + b − π) + (x − b + π) + (−x − a + π) + (−x + a − π)

]
= 0

1
2π

[
(x + b − π) + (x − b + π) + (−x − a + π) + (−x + a + π)

]
= 1

1
2π

[
(x + b − π) + (x − b − π) + (−x − a + π) + (−x + a + π)

]
= 0

So we have achieved a realization of (13), which asserts the completeness of the
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orthonormal eigenfunctions. From the established convergence of

J(x, y; λ) = 2
π

∞∑

n=1

λn sin(nx) · sin(ny)

we are permitted to write

∞∑

n=1

λn sin(nx) · 1
2n2 · sin(ny) = − 1

2∂ 2
y

∞∑

n=1

λn sin(nx) · sin(ny)

= − 1
2∂ 2

y J(x, y; λ)

which in the limit λ ↑ 1 becomes = − 1
2∂ 2

y δ(y − x)

which is the result that at (9) we sought. It was Euler’s trick that allowed the
argument to get off the ground; the argument thereafter was simple in concept,
but at several points hinged on information of a sort that only a resource like
Mathematica can provide, and upon an inventive genius that reveals the hand
of Carl Bender.

Alternative approach to theparticle-in-a-boxproblem. Supposing theHamiltonian
H to be t-independent, we have this

|ψ)t = exp
{

1
i! Ht

}
|ψ)0

formal solution of the time-dependent Schrödinger equation H |ψ) = i!∂t|ψ).
In the x-representation

(x|ψ)t =
∫

(x| exp
{

1
i! Ht

}
|y)dy(y|ψ)0

If the spectrum is discrete/non-degenerate we can use H =
∑

n |n)En(n| to
obtain

ψ(x, t) =
∫

K(x, y; t)ψ(y, 0)dy

K(x, y; t) =
∑

n

(x|n)eEnt/i!(n|y)

where the “propagator” (or “Green function”) is a solution of the Schrödinger
equation, distinguished from others by the property

lim
t↓0

K(x, y; t) = δ(y − x)

Returning in this light to our boxed particle, we have

Kbox(x, y; t) = 2
π

∞∑

n=1

e−
1
2 in2t sin(nx) sin(ny)

= 1
π

∞∑

n=1

e−
1
2 in2t

{
cos[n(x − y)] − cos[n(x + y)]

}
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Recalling the definition of the Jacobi theta function5

ϑ3(z, τ) =
∞∑

−∞
ei[πτn2−2zn] = 1 + 2

∞∑

n=1

eiπτn2
cos 2nz

we have
Kbox(x, y; t) = 1

2π

{
ϑ
(x − y

2
,− t

2

)
− ϑ

(x + y
2

,− t
2

)}
(15)

Fundamental to the theory of theta functions is Jacobi’s Identity

ϑ(z, τ) =
√

i/τ ez2/iπτ · ϑ
(

z
τ ,− 1

τ

)
(16)

in which—remarkably—τ appears upstairs on the left, but downstairs on the
right.6 Drawing upon (16) we obtain7 this “Jacobi transform” of (15):8

Kbox(x, y; t) =
√

1/2πit
∞∑

n=−∞

[
ei

(x−y+2πn)2

2t − ei
(x+y+2πn)2

2t

]
(17)

Setting it = σ, we have

=
∞∑

n=−∞

[
1√
2πσ

e−
(x−y+2πn)2

2σ − 1√
2πσ

e−
(x+y+2πn)2

2σ

]

and in the limit t↓0 obtain a pair of “Dirac combs”

lim
t↓0

Kbox(x, y; t) =
∞∑

n=−∞

[
δ(x − y + 2πn) − δ(x + y + 2πn)

]

↓
= δ(x − y) if x, y are both interior to the box

5 This is one of four functions (from which I will henceforth omit the
identifying subscript) introduced by Carl Jacobi (1804–1851) to provide a
platform for his theory of elliptic functions (1829). In the following I will
draw frequently upon material in my “Applied theta functions of one or several
variables,” (October, 1997).

6 Jacobi’s Identity—often called “Jacobi’s imaginary transformation”—plays
a central role in so many such diverse applications that Richard Bellman (in
his A Brief Introduction to Theta Functions (1961)) has remarked that “it is
not easy to find another identity of comparable significance.”

7 See “Applied theta functions,”5 page 12.
8 If points x and y lie within the box (0 < x, y < π) there is a direct path

y → x and infinitely many reflected paths, some of which are first reflected
at the right wall, others at the left wall (see figures 2, 3, 4 in “Applied theta
functions”5). Feynman summation over that population of paths (effectively, a
“method of images”) leads directly to (17).
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We have established completeness of the functions {sin nx} by an alternative
to the elegantly belabored method described on pages 6–8.

Note finally that if the Schrödinger equation is written

Dψ(x, t) = 0 with D ≡ 1
2∂ 2

x + i∂t

then

DKbox(x, y; t) = D
{

2
π

∞∑

n=1

e−
1
2 in2t sin(nx) sin(ny)

}

= 2
π

∞∑

n=1

D
{

e−
1
2 in2t sin(nx) sin(ny)

}

︸ ︷︷ ︸
= 0

0
This is usually phrased as the statement that

θ(x, t) ≡ ϑ(πz, it) = 1 + 2
∞∑

n=1

e−πn2t cos(2πnz) : t > 0

satisfies the heat equation: 1
4π ∂ 2

z θ(z, t) = ∂tθ(z, t).

BBP resolution: case of a harmonic oscillator. The standard theory,9 stripped
to its bare bones (set ! = m = ω = 1), reads

H = − 1
2∂2

x + 1
2x2 (18)

Hφn(x) = (n + 1
2 )φn(x)

φn(x) = 1√
2nn!

√
π

Hn(x)e−x2/2 : n = 0, 1, 2, . . .

Our objective is, as before, to recover the operator (18) from the spectral
decomposition of H . Proceeding as we did on page 5, we write

∫
(xH |y)dy(y|ψ) =

∫ ∑

n=0

(x|n)(n + 1
2 )(n|y)dy(y|ψ)

whence

H(x, y) ≡ (x|H |y) =
∑

n=0

φn(x)(n + 1
2 )φn(y)

=
∑

n=0

[
− 1

2∂2
y + 1

2y2
]
φn(x)φn(y) %

=
[
− 1

2∂2
y + 1

2y2
] ∑

n=0

φn(x)φn(y) %%

=
[
− 1

2∂2
y + 1

2y2
]
δ(y − x) by completeness

giving ∫
(xH |y)dy(y|ψ) =

∫ [
− 1

2∂2
y + 1

2y2
]
δ(y − x)ψ(y)dy

=
[
− 1

2∂2
x + 1

2x2
]
ψ(x)

9 See Griffiths & Schroeter,4 §2.3.
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The argument fails at % −→ %% for the same reason as before:
∑

n φ(x)φn(y)
does not converge uniformly.

BBP resort to the same work-around as before: they look to the tempered
series

∑
n λnφ(x)φn(y) with the intention of finally letting the Euler parameter

λ ↑ 1. In this instance, Mathematica has nothing useful to say, but the problem
was studied by Gustav Ferdinand Mehler (1835–1895), who in 1866 produced
Mehler’s formula,10 of which one formulation reads

∞∑

n−0

λn

2nn!Hn(x)Hn(y) = 1√
1 − λ2

exp
{2xyλ − (x2 + y2)λ2

1 − λ2

}
(19)

which by Hn(x) =
√

2nn!
√

πe
1
2 x2

φn(x) becomes

J(x, y; λ) ≡
∞∑

n=0

λnφn(x)φn(y)

= 1√
π
e−

1
2 (x2+y2) 1√

1 − λ2
exp

{2xyλ − (x2 + y2)λ2

1 − λ2

}
(20.1)

= 1√
π(1 − λ2)

exp
{4xyλ − (x2 + y2)(1 + λ2)

2(1 − λ2)

}
(20.2)

= 1√
π(1 − λ2)

exp
{

λ − 1
λ + 1

(x + y)2

4
+ λ + 1

λ − 1
(x − y)2

4

}
(20.3)

These are alternative statements of what E. T. Whittaker has called the
“quantum Mehler formula.” BBP reproduce what they consider to be “perhaps
the simplest derivation of the Mehler formula” (of which there are—as will
emerge—a great many, notable for their diversity), namely one presented by
G. H. Hardy in some orthogonal polynomial lectures (1933) as later recorded
in a publication of G. N. Watson; Hardy’s result, as it happens, lacks the
xy -summetry that is manifest on both sides of the equations (19) and (20).
The right sides of (20) provide alternative descriptions of what is in effect the
generating function of the bivariate functions φn(x)φn(y), and announce the
uniform convergence of

∑
nλnφn(x)φn(y) : |λ|< 1. The special utility of (20.3)

lies in the observation that as λ ↑ 1 we obtain (use 1− λ2 = (1 + λ)(1− λ) and
write 1 − λ = σ)

lim
λ↑1

J(x, y; λ) = lim
σ↓0

1√
2πσ

exp
{
− (x − y)2

2σ

}
(21)

= Gaussian representation of δ(y − x)

We have, in this instance, established completeness directly, without appeal to
the δ(y − x)-defining condition (13).

10 “Hermite polynomials”—of which anticipations (1810) can be found already
in the work of Laplace—were studied in detail by Chebyshev (1859) in work
that did not attract much attention. Hermite’s independent contributions to
the subject date from 1864, so the subject was still quite new when Mehler
entered the picture.
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With the uniform convergence of the series J(x, y; λ) now established, we
can write

Hosc(x, y; λ) =
∞∑

n=0

λnφn(x)
[
n + 1

2

]
φn(y)

=
∞∑

n=0

λnφn(x)
[
− 1

2∂ 2
y + 1

2y2
]
φn(y)

=
[
− 1

2∂ 2
y + 1

2y2
] ∞∑

n=1

λnφn(x)φn(y)

which in the limit λ↑1 becomes Hosc(x, y) = [− 1
2∂ 2

y + 1
2y2 ]δ(y − x), giving

∫
Hosc(x, y)ψ(y)dy =

[
− 1

2∂ 2
x + 1

2x2
]
ψ(x)

Alternative approach to the oscillator problem. The oscillator propagator

Kosc(x, t; y, 0) =
∞∑

n=0

e−i(n+ 1
2 ) tφn(x)φn(y)

can be written = e−i 1
2 t ·

∞∑

n=0

(e−it)nφn(x)φn(y)

If, on the right side of (20), we make the replacement λ → e−it (where the
Euler parameter λ has now acquired direct physical significance) and command
ExpToTrig//Simplify we obtain

Kosc(x, t; y, 0) = prefactor · exp
{
iS(x, t; y, 0)

}

S(x, t; y, 0) = (x2 + y2) cos t − 2xy
2 sin t

(22.1)

where the prefactor, which derives partly from the zero-point shift of the
oscillator spectrum, is given by

prefactor =
√

λ√
πλ(λ−1 − λ+1)

∣∣∣∣∣
λ → e−it

= 1√
2πi sin t

(22.2)

The function S(x, t; y, 0) is a familiar object. For a classical oscillator with
m = ω = 1 the Lagrangian reads L(ξ̇, ξ) = 1

2 (ξ̇2 − ξ2). Let ξ(τ) be any path
with these specified endpoints: ξ(0) = y ; ξ(t) = x. The “action functional” is
defined

S[ξ(τ)] ≡
∫ t

0
L(ξ̇(τ), ξ(τ))dτ

By Hamilton’s Principle

δS[ξ(t)] = 0 =⇒ d
dτ

∂L
∂ξ̇

− ∂L
∂ξ

= 0

the solutions of which are “dynamical paths.” In the present instance

ξ̈(τ) + ξ(τ) = 0 =⇒ ξdynamical(τ) = A cos τ + B sin τ

= y cos τ + x − y cos t
sin t

sin τ
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The “dynamical action function” (extremizer of the action functional) is the
2-point function defined

S(x, t; y, 0) = S[ξdynamical(t)] =
∫ t

0
L(ξ̇(τ), ξ(τ))dτ

∣∣∣
ξ=ξ

dynamical

which in the present instance becomes

= (x2 + y2) cos t − 2xy
2 sin t

From L(ξ̇, ξ) = 1
2 (ξ̇2 − ξ2) we obtain the Hamiltonian H(℘, ξ) = 1

2 (℘2 + ξ2) and
Mathematica confirms that S(x, t; y, 0) satisfies the Hamilton-Jacobi equation

H
(

∂S
∂x , x

)
+ ∂S

∂t = 0

Reverting now to the quantum side of the story,11 in 1941 23-year-old
Richard Feynman asked Herbert Jehle (formerly a student of Schrödinger, then
a visitor at Princeton) whether he had ever encountered a quantum allusion
to the classical Principle of Least Action. Jehle directed him to a paper12 in
which Dirac draws attention —as he did again later in §32 of his Principles
of Quantum Mechanics—to the structural resemblance of certain action-based
classical constructions and their purported quantum analogs. Feynman asked
whether Dirac’s “analogies” might read as actual equations, and promptly
demonstrated a sense in which they could be: thus was the sum-over-paths
formalism born(Feynman dissertation: “The principle of least action in quantum
mechanics,” 1942). Fundamental to that formalism are (1) the construction

K(x, t; y, 0)

=
∑

paths

∫∫
K(x, t; xn, nτ) · · ·K(x2, 2τ ; x1, τ)K(x1, τ ; y, 0)dx1dx2 · · · dxn

path : {x, t} ← {xn, nτ} ← · · · ← {x2, 2τ} ← {x1,τ} ← {y, 0}
τ = t/(n + 1)

and (2) the proposition that quantum mechanics is briefly classical :

K(x, t; y, 0) ≈ A(t) exp
{

i
!S(x, t; y, 0)

}
: t small

Feynman fixed A(t) by the requirement that limt↓0 K(x, t; y, 0) = δ(y − x).

11 I borrow from my Quantum Lecture Notes (2000), Chapter 3, “Feynman
Quantization.”

12 P.A.M.Dirac, “The Lagrangian in quantum mechanics,” Physicalische
Zeitschrift der Sowjetunion 3, 61 (1933), reproduced in J. Schwinger, Selected
Papers on QED (1958).
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The WKB approximation was invented simultaneously/independently (in
1926) by Gregor Wentzel, H. A. Kramers & Léon Brillouin, all of whom worked
in one dimension. John Van Vleck (1899–1980) sought in 1928 to show that the
deeper significance of a certain detail becomes evident only when one works in
higher dimension.13 He established that for small t

K(xxx, t;yyy, 0) ≈ (i2π!)−n/2
√

D exp
{

i
!S(xxx, t;yyy, 0)

}
(23)

D(xxx, t;yyy, 0) = (−)n det
∥∥∥

∂2S(xxx, t;yyy, 0)
∂xr∂ys

∥∥∥

and that this result is exact for systems (free particles, particles in free fall,
oscillators) in which the Hamiltonian H depemds at most quadratically on p
and x . Van Vleck’s accomplishment attracted little notice at the time (which
is why, when he spoke at Brandeis in the late 1950s, he still possessed nearly all
of his reprints. . . and how I acquired mine). When—after an interval of nearly
thirty years—the relevance of (23) to the Feynman formalism was appreciated
D came to be called “the Van Vleck determinant.” In the one-dimensional case
(23) reads

K(x, t; y, 0) ≈

√
i

2π!
∂2S(x, t; y, 0)

∂x ∂y
exp

{
i
!S(x, t; y, 0)

}

which(set ! = 1) becomes—in precise agreement with (22)—

Kosc(x, t; y, 0) =
√

1
2πi sin t

exp
{

i
(x2 + y2) cos t − 2xy

2 sin t

}
(24)

Mathematica confirms that Kosc(x, t; y, 0) satisfies the Schrödinger equation

1
2

[
− ∂2

x + x2
]
ψ = i∂tψ

It is a solution distinguished from others by the circumstance that (compare
(21))

lim
it↓0

Kosc(x, t; y, 0) = lim
it↓0

1√
2πit

exp
{
− (x − y)2

2it

}
= δ(y − x)

which again establishes the completeness of the oscillator eigenfunctions.14

All of which is well and good, and supports the assertion that working from
the propagator—rather than from the spectral representation of H—obviates
any need to resort to Euler’s trick, pretty though ramifications of the latter
strategy can be.

13 “The correspondence principle in the statistical interpretation of quantum
mechanics,” PNAS 14, 178 (1928).

14 Equation (19) can be obtained by a variety of other means. See, for
example, Quantum Lecture Notes, Chapter 3, pages 43–46, and New Chapter
0, page 40. Each of those arguments can be considered to provide a derivation
of Mehler’s formula.
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Laguerre polynomials & the Lebedeff / Hardy-Hille formula. I am not aware of
antique occurances of Hermite/Laguerre polynomials in the work of physicists,
but since 1926, when Schrödinger announced the invention of the equation
that bears his name, every mention of “Hermite polynomials” has caused every
physicist to think of harmonic oscillators, and at every mention of “associated
Laguerre polynomials” L(α)

n (x) =LaguerreL[n, α, x] to think of the hydrogen
atom. Spherical separation of the time-independent wave equation implicit in
the Hamiltonian

H = 1
2m (p2

1 + p2
2 + p2

3) − k 1√
x2
1 + x2

2 + x2
3

leads15 to Ψn(m(r, θ, φ) = Rn((r) · Y m
( (θ, φ) where

Rn((r) ∼ e−
1
2 x x(L(2(+1)

n−l−1(x) :
{

n = 1, 2, 3, . . .
2 = 0, 1, 2, . . . , n − 1

x ≡ 2r
na

while polar separation of the in case of the Hamiltonian

H = 1
2m (p2

1 + p2
2) − k 1√

x2
1 + x2

2

that defines “2-dimensional hydrogen”16 leads17 to

Rn((r) ∼ e−
1
2 xx(L(2()

n−(−1(x)

x ≡ 2x
(n − 1

2 )a

Laguerre polynomials come into play also when, in the phase space formulation
of quantum mechanics, one looks to the Wigner distributions18

Pn(x, p) = 1
π!

∫ ∞

−∞
φ̄n(x + ξ)φn(x − ξ) exp[2(i/!)pξ ]dξ

associated with the oscillator eigenstates φn(n) = 1√
2nn!

√
π
Hn(x)e−x2/2 we

15 See Griffiths & Schroeter,4 equation (4.89).
16 Interest in this formal system springs from the fact that the classical Kepler

problem gives rise to orbits that are confined to a plane. In a 2-dimensional
world one would expect—if central forces fall off geometrically—to have, on the
other hand,

H = 1
2m (p2

1 + p2
2) − k log

√
x2
1 + x2

2

17 See “Classical/quantum theory of 2-dimensional hydrogen”(1999), page 12.
18 See Quantum Lecture Notes, Chapter 2, pages 10, 11.
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obtain (after again setting ! = m = ω = 1)

P0(x, p) = + 1
π e−

1
2EL0(E) where E ≡ 2(p2 + x2)

P1(x, p) = − 1
π e−

1
2EL1(E) = − 1

π e−
1
2E(1 − E)

P2(x, p) = + 1
π e−

1
2EL2(E) = + 1

π e−
1
2E(1 − 2E + 1

2E2)
...

Pn(x, p) = (−)n 1
π e−

1
2ELn(E)

where the addition formula L(α+β+1)
n (x + y) =

∑n
i=0 L(α)

i (x)L(β)
n−i(y) supplies

Ln(E) =
n∑

i=0

L
(− 1

2 )
i (2p2)L(− 1

2 )
n−i (2x2)

One fine day—while still a grad student, now more than sixty years ago—
I went to the Brandeis University library to consult a paper to which I had
encountered a reference.19 I took advantage of the opportunity to browse a
bit, and—quite by accident—came upon a paper by E. T. Whittaker,20 which
I recognized to have much in common with a (belatedly influential) paper
by Dirac12 and to have anticipated in some respects the work of Schwinger
and Feynman. Perhaps it is because we usually think of Whittaker (1873–
1956, rough contemporary therefore of Arnold Sommerfeld and Einstein) as a
distinguished classical mathematician/physicist, or perhaps World War II was
a fatal distraction that caused 1941 publications to attract few readers. I have,
in any event, never encountered a reference to Whittaker’s paper (except for his
own, in his The History of the Theories of Aether & Electricity [1910, revised
1951], to which in 1953 he added a Volume II in which he traced the history
of quantum mechanics 1900–1926 and alludes to his own work on page 279).
Whittaker’s quantum paper is listed as the 55th of 56 research papers in

19 Neil H. McCoy, “Certain expansions in the algebra of quantum mechanics,”
Proc. Edinburgh Math Soc. (2nd Series) 3, 118 (1932). I gave an account
of McCoys paper—which addresses the operator ordering/reordering problem,
and provides a valuable adjunct to Campbell-Baker-Hausdorff theory—at a
Reed College physics seminar “An operator ordering technique with quantum
mechanical applications”(12 October 1966 [see Collected Seminars, 1963–1970])
where I used McCoy’s technique (as it pertains to ep2+ x2

) to obtain

Kosc(x, t; y, 0) =
√

mω

2πi! exp
{ i

!mω
(x2 + y2) cos ωt − 2xy

2 sin ωt

}

which at m = ω = ! = 1 gives back (24).
20 “On Hamilton’s principal function in quantum mechanics,” Proc. Roy. Soc.

(Edinburgh), Section A, 61, 1–19 (1941).
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mathematics & mathematical physics in G. Temple’s biography (available
on the web), but seems otherwise to have vanished without trace . . .with one
sole exception: Google responds to the keyword “Whittaker quantum” with my
own “E. T. Whittaker’s quantum formalism: forgotten precursor to Schwinger’s
variational principle” (2001), which provides a 43-page account of the subject
and some of its ramifications, and will be my source for what now follows.21

To illustrate his methods, Whittaker looks first (inevitably) to the harmonic
oscillator,22 and then to systems of the seemingly preposterous design

H = 1
2m

{
1
$ p x p + A

x
+ B x

}
(25)

(here [# ] = length, while A and B have obvious physical dimension), which
he plucks out of the air with mathematical malace aforethought. Whittaker,
broadly informed classical analyst that he was, was aware that Mehler’s formula
—fundamental to the theory of Hermite polynomials—is representative of a
class of such formulae. And that within that class falls “Lebedeff’s formula,”
fundamental to the theory of generalized Laguerre polynomials.23 Whittaker’s
primary objective—but by no means his only valuable accomplishment in this
paper—was to construct a “quantum mechanical deduction of the Lebedeff
formula.”

So much for setting the stage. Turning now to the particulars of Whittaker’s
argument:

21 A much briefer synopsis of Whittaker’s theory can be found in my
handwritten Lectures on Quantum Mechanics (1967–68), Chapter III, pages
68–75.

22 Whittaker’s argument leads him to what he calls a “quantum mechanical
deduction of Mehler’s formula.” A similar result was obtained by Feynman in
1947 (and used by him to illustrate the power of the path-integral method), and
by Schwinger (who in unpublished class notes used an elegant operator-ordering
terchnique) a bit later, but neither seems to have been aware of the Mehler
connection. . . or that Whittaker had been there already. Whittaker, for his own
part, appears to have been more interested in the mathematics than the physics,
and neglected to mention (did not notice? seems odd) that the S(x, t; y, 0) in
(24) is precisely the classical action for an oscillator—a point of which Feynman,
at least, was very well aware.

23 W. Lebedeff worked with Hilbert and took his PhD from Göttingen in 1906.
Lebedeff’s formula appears for the first time in Mathematische Annalen 64, 388
(1907). Whittaker remarks that the formula was rediscovered by Einar Hille
(1926), G. H. Hardy (1932) and by many others. It is today most commonly
known as the “Hille-Hardy formula,” else “Hardy-Hille formula,” with never a
mention of Lebedeff.
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The polynomials L(α)
n (z) are generated24

∞∑

n=0

λnL(α)
n (z) = 1

(1 − λ)α+1
e−λz/(1−λ) : α > −1

Explicitly
L(α)

n (z) = 1
n!z

−αez∂ n
z

{
e−zzn+α

}

=
n∑

k=0

Cn,k(α)zk

Cn,k(α) = (−)k (n + α)!
k!(n − k)!(k + α)!

where the “shifted factorial” (n+α)! ≡ (1+α)(2+α) · · · (n+α) = Γ (n+α+1)
would, if it included the factor (0 + α), be a “Pochhammer polynomial.” From

C3,0 = + (3 + α)!
0!3!1

= (1 + α)(2 + α)(3 + α)
6

C3,1 = − (3 + α)!
1!2!(1 + α)!

= − (2 + α)(3 + α)
2

C3,2 = + (3 + α)!
2!1!(2 + α)!

= +(3 + α)
2

C3,3 = − (3 + α)!
3!0!(3 + α)!

= −1
6

we obtain, for example,

L(α)
3 (z) = − 1

6z3 + 1
2 (3 + α)z2 − 1

2 (2 + α)(3 + α)z1 + 1
6 (1 + α)(2 + α)(3 + α)z0

which at α = 0 gives L3(z) = L(0)
3 (z) = − 1

6z3 + 3
2z2 − 3z + 1. Semi–inversely,

L(k)
n (z) = (−∂z)kLn+k(z) : k an integer

The polynomials L(α)
n (z) are orthogonal in this sense

∫ ∞

0
zαe−zL(α)

m (z)L(α)
n (z)dz = (n + α)!

n!
δmn

and are regular solutions of (it is here that the dimensionlessness of z becomes
critical) {

z∂ 2
z + (1 + α − z)∂z + n

}
f(z) = 0

24 Here and below z is a generic dimensionless real variable; x, when it
reappears, will be a physical variable with the dimensionality [x ] = length.
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The functions

Φ (α)
n (z) ≡ Nz

1
2 αe−

1
2 zL(α)

n (z) : N ≡
[

n!
(n + α)!

] 1
2
, α > −1

are therefore orthonormal
∫ ∞

0
Φ (α)

m (z)Φ (α)
n (z)dz = δmn (26)

and (see Abramowitz & Stegun, §22.6) are solutions of
{

z∂ 2
z + ∂z +

[
− α2

4z
− 1

4
z + n + α + 1

2

]}
f(z) = 0

as can be verified by computation in illustrative cases. But z∂z = ∂zz − 1, so
we have {

∂zz∂z −
1
4α2

z
− 1

4z
}

f(z) = −
{
n + 1

2 (α + 1)
}
f(z) (27)

Bringing the physical variable x now into play, we write z = x/# and by
dz = (1/#)dx from (26) obtain the orthonomality statement

∫ ∞

0
ϕ (α)

m (x)ϕ (α)
n (x)dx = δmn with ϕ (α)

n (x) ≡ (1/
√

#) Φ (α)
n (x/#)

while by ∂z = # ∂x we from (27) obtain
{

# ∂xx ∂x −
1
4#α2

x
− x

4#

}
ϕ (α)

n (x) = −
[
n + 1

2 (α + 1)
]
ϕ (α)

n (x)

Multiplication by (1/2m#2)(!
i )2 gives

1
2m

{
1
$ (!

i ∂x)x(!
i ∂x) +

1
4!2α2/#

x
+ !2

4#3
x
}

ϕ (α)
n (x)

= !2

2m#2
[
n + 1

2 (α + 1)
]
ϕ (α)

n (x) (28)

where {etc.} is the x-representation of a Hamiltonian of the Whittaker’s form
(25), where A and B have acquired the special form

A(α) = !2α2/4#, B = !2/4#3

It is by now clear that it was mathematical opportunism, not physics, that
ignited Whittaker’s interest in Hamiltonians of type (25), which refers actually
to an α-paramterized population of systems.

Let (28) be abbreviated

H (α)ϕ (α)
n = E (α)

n ϕ (α)
n

E (α)
n = ! ω (α)

n with ω (α)
n ≡ ω

[
n + 1

2 (α + 1)
]

(29)
≡ ωn + ωα

ω ≡ !/2m#2

where n = 0, 1, 2, . . . and α > −1. It is interesting that the spectra of such
systems are “displaced oscillator spectra,” which I take to be yet another
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symptom of the ever on-going conversation between Laguerre polynomials and
Hermite polynomials.

The Hardy-Hille formula can be rendered25

∞∑

n=0

n!
(n + α)!

L(α)
n (x)L(α)

n (y) λn = HH(x, y, λ; α)

with HH(x, y, λ; α) = 1
(xyλ)α/2(1 − λ)

e−(x+y)λ/(1−λ)Iα

(2
√

xyλ
1 − λ

)

where Iα(•) = BesselI[α, •] is a modified Bessel functxion of the first kind.
BBP might be expected to have interest in a variant of the form

∞∑

n=0

λnϕ (α)
n (x)ϕ (α)

n (y) = BBP (x, y, λ; α) (30)

and to consider λ to be an Euler parameter. The function BBP (x, y, λ; α)
is simply a generating function of the bivariate functions ϕ (α)

n (x)ϕ (α)
n (y), but

BBP’s objective would be to establish completeness
∞∑

n=0

ϕ (α)
n (x)ϕ (α)

n (y) = δ(y − x) : any given/fixed α

in the limit λ↑ 1.26

Whittaker interprets his “quantum mechanical deduction of the Lebedeff
formula” assignment to mean “construct a closed-form description of the
propagator”

Kα(x, y; t) = (x|e−(i/!)H αt|y) : Hα = 1
2m

{
1
$ p x p + A(α)x−1 + B(α)x

}

=
∞∑

n=0

ϕ (α)
n (x)e−(i/!)E(α)

n tϕ (α)
n (x)

which by E(α)
n = (!2/2m#2)

[
n + 1

2 (α + 1)
]
≡ !(ωn + ωα) reads

= e−iωαt
∞∑

n=0

(
e−iωt

)n
ϕ (α)

n (x) ϕ (α)
n (y) (31)

25 See the Wikipedia article “Laguerre polynomials.”
26 Convincing numerical evidence of completeness can be based upon (12).

Use numerical integration to examine

∫ b

a

N∑

n=0

ϕ (α)
n (x)ϕ (α)

n (y)dy

for ascending values of N and three relative positionings of {a, x, b}.
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A lengthy argument27 takes Whittaker from (31) to his formulation of the
Lebedeff formula

Kα(x, y; t) = e−
1
2 iπα

2i# sin( 1
2θ )

exp
{

i
x + y
2#

cot( 1
2θ )

}
Jα

( √
xy

# sin( 1
2θ )

)
(32)

where θ ≡ ω t denotes “dimensionless time” and Jα(•) = BesselJ[α, •] is
a Bessel function of the first kind. The mere existence of such a formula
is sufficient (except when sin

(
1
2θ

)
vanishes) to permit BBP to execute their∑

D = D
∑

step. But to complete their argument we must establish that

lim
t↓0

Kα(x, y; t) = δ(y − x)

This is accomplished on page 19 of WQF.31

Though Lebedeff’s formula (32) was obtained here from a Hamiltonian that
may seem contrived, it illustrates a point of fundamental physical significance
—a point noted already in connection with the boxed particle problem (and
attributed there to the structure of Jacobi’s identity (16)) and encountered
again at (24) in connection with the oscillator problem (a consequence there of
the structure of Mehler’s fomula):

t lives upstairs on the left, but downstairs on the right.

In Max Born’s terminology, we encounter
• the “wave representation”of quantum mechanics on the left,
• the “particle representation” on the right.

And as has been emphasized successively by Dirac, Whittaker and Feynman, it
is the latter that speaks most directly to the classical-quantum connection.28 I
have encountered the claim that every quantum problem that has been solved
by ordinary means (producing eigenfunctions that are higher functions of one
sort or another) has by now been solved also by Feynmanesque means. Which
leads one to speculate that the Mehler and Lebedeff/Hardy-Hille formulae are
citizens in a vast population of such formulae, that are as varied and richly
interconnected as the higher functions are known to be. On pages 30–32 of
WQF I show how Mehler’s formula can be recovered from (the α-parameterized
population of) Lebedeff/Hardy-Hille formulae.

On pages 20–27 of WQF I explore the classical physics of Whittaker’s
system, and its relationship to the construction of the quantum propagator;
i.e., to the Lebedeff/Hardy-Hill formula.

Acknowledgement. I must thank David Griffiths for bringing the Bender/
Brody/Parry paper to my attention.

27 For my account of the details, see “E. T. Whittaker’s quantum formalism”
(2001), pages 13–18. This essay will be denoted WQF in what follows.

28 Modern students of that connection might take strenuous exception to such
an assertion.


